functions: charting (a variety of chart types and options are available); applying decision rules (White-Liberty rules are used); recording changes in the instructional program and printing reports (program description, print data file, print results of decision rules). The charting utility works well. You may select a standard 6 cycle chart or various expanded versions of the same. Charts follow most charting conventions and include correct and error frequencies, change lines, a minimum celeration line and optional extras—a horizontal line at the aim rate, most recent 6 day celeration lines (no values given), and a pointer. The charting facility may be of particular value to trainers for teaching and immediately illustrating various charting and performance analysis procedures and options. We have not been able to get the decision rule utility to work. Whenever used it puts up a System Error #16 message and "hangs" the program, despite a message on screen that says, "Press Any Key to Continue." All of the other functions seem to work as described.

EASE OF USE. AIMSTAR is easy to use. The menus make available choices clear. It's easy to get from one menu to another. Many screens have default settings, conveniently used by pressing the enter key. The space bar is used to toggle choices on several of the data input screens. Key functions are generally intuitive or in keeping with standard Apple usage. Experienced Apple users will find AIMSTAR easy.

ERROR HANDLING. Most screens provide opportunities to revise newly entered data before it's saved. As noted above, the program hangs when you get System Error #16 message. It also hangs if you try to use the print functions when your Apple is not attached to a printer. This problem is noted in the manual, however. Most errors are not disastrous, but some are definitely inconvenient. Error recovery still needs some work.

DOCUMENTATION. The program manual comes in a three ring binder. It includes an introduction, an overview, a tutorial (the main section), auxiliary AIMSTAR functions, and three appendices. While the manual enables the new user to run the program and use most of its functions, documentation is not a strong point of AIMSTAR. The manual is 72 Xeroxed pages of dot matrix print. There is a brief table of contents, but no index, no list of commands or diagram of program functions, and no running headers on the pages to make it easy to find a particular chapter or appendix. There are quite a few typos and grammatical errors. The manual does get the basic job done, but it doesn't have many niceties or look professional. It does a good job of depicting AIMSTAR screens crucial to program management. A serious shortcoming of the manual is its failure to mention that no backup copy is provided or possible to make. Also, no mention is made of the policy on replacement copies, their availability or cost.

HOW TO PURCHASE. Order from ASIEP Education Company, 3216 NE 27th, Portland, Oregon 97212. The list price is $195. This includes the program diskette, a tutorial diskette, and the manual. The tutorial diskette was not included in my kit. An attachment said it would be along in a couple of weeks. The program authors are Ted Hasselbring and Carol Hamlett of Peabody College.

SUMMARY. AIMSTAR is not a polished program yet. The decision rules are not easy to make work, error recovery is not fully developed and the documentation is not quite professional in form or function. There are also a few program features that would seem to be easy to include that are not present. For instance, minimum celeration lines for errors, data values for most-recent celeration lines and the option of selecting how many days the most-recent celeration line calculation includes. The package is not up to what the public expects of commercial programs in this price range today. However, I still think AIMSTAR will be useful to me and believe a lot of other Precision Teachers will think so too. Whether classroom teachers will find it functional is an open question, but it may be especially useful to Precision Teaching trainers, workshop providers, and researchers. It should help all of us apply and learn decision rules. We encourage the AIMSTAR authors and publisher to continue to refine this promising program.

LETTER TO THE EDITOR

Dear Patrick,

I read with some interest your prompt to send along references to Precision Teaching in other publications. Here's why!

... (I recently became aware of) a 1982 article in the American Journal of Occupational Therapy by Kenneth Ottenbacher that (supposedly) introduced the celeration line to occupational therapy (Ottenbacher, Kenneth. [1982] Patterns of postrotary nystagmus in three learning-disabled children. American Journal of Occupational Therapy, 36, 657-663.)

I checked out the article ... Ottenbacher references Owen White's split-middle paper (White, O. R. [1974]. The split middle: a "quickie" method of trend estimation. Experimental Education Unit, Child Development and Mental Retardation Center, University of
Washington.) and uses the "quickie" method to draw (straight-line) slopes (he calls them celerations) through his data. On closer inspection, though, the ordinates of his graphs are equal interval scales—plus l progressions of postrotary nystagmus. This is especially interesting since he projects the baseline data with these add-subtract straight lines. It is consistent then that Ottenbacher report his slopes with (plus and) minus signs.

More interestingly, though, is Ottenbacher's data recharted on the Standard Celeration Chart (see Chart 1). As you would guess, the characteristic add-subtract variability is gone... the correctly recharted data graphically display the patterns of change in the duration of postrotary nystagmus in a far more dramatic (and useful) way. Check out how closely those frequencies hug the celeration line. So little bounce in a duration measure has rarely been seen in my experience.

Sincerely,

Jim Pollard
Merrimack Education Center
101 Mill Road
Chelmsford, MA 01824

Thanks go to Jim Pollard for sharing this letter and recharted data. It is clear that Ottenbacher did not understand that celeration lines cannot be drawn on an equal interval (add-subtract) chart and that celeration is a specific measure that summarizes seven or more frequencies displayed only on the Standard Celeration Chart.

If you have similar information to share or you just want to express your feelings about something, why not send a letter to the editor!
values of the slopes (incorrectly called celerations) reported by Ottenbacher:

\[
\begin{align*}
+1.21 & \quad +1.57 \\
+1.00 & \quad -1.02 \\
+1.00 & \quad -1.08
\end{align*}
\]

chart 1. data from an article by kenneth ottenbacher (1982) recharted by jim pollard.