A PRECISION TEACHING DATABASE

William Walker
Michele Gerant
University of Florida

"A database is a shared collection of interrelated data designed to meet the needs of multiple types of end users." "Database technology is unlikely to succeed unless the end users it serves are intimately involved in certain aspects of its design."

These are quotes from an authority on database technology (Martin, 1981), which introduce themes for this article about a database for precision teachers and trainers. The article describes the database and illustrates some current uses. We want to share our work at this stage in its development to encourage participation and feedback by a wider audience.

Who Needs a Database? Why?

Precision Teachers have helped develop an effective technology for accurately describing changes in human performance and learning. A standard dimension of behavior, frequency, a sensitive and convenient unit, movements per minute, and a universal display device, the Standard Celeration Chart, have advanced us far beyond traditional educational measurement procedures. For the individual child and pinpoint, PT procedures make it easy to observe behavioral variability, so we can apply our strategies and tactics to improve teaching and learning.

So far, so good. We can detect within child variability with relative ease. At the level of the Chart, our technology is effective. However, we don't have a technology of similar power for analysis across charts. Active Precision Teachers produce a large number of charts. As yet, no system has evolved for "managing" them. It's difficult to use PT data to get an accurate look at the across pinpoint, learner, or teacher picture. A PT database can help us see across chart, learner, and teacher variability as clearly as we can already see changes in learning and performance on individual charts.

The answer to the question we posed in the heading above is, "Everyone who wants to take a macro look at Precision Teaching data needs a database." For instance, we as teacher trainers, are primarily interested in discovering and controlling sources of variability among our practicum teachers. Gilbert (1976) reasons that if one human being in a setting is capable of high productivity and efficiency, then we need to ask ourselves why everyone in the setting isn't making similar accomplishments. We apply this model to try to bring our least productive and efficient teachers up to the performance of our most effective teacher. This will be possible only if we can see the variability in productivity and efficiency among our student teachers. Curriculum developers may be more interested in using the database to look at variability across instances of performance on the same pinpoint or curricular material.

Many of us need a database, even baseball managers. Recently, an article described how Joe Torre, manager of the Atlanta Braves was using a database composed of player statistics to make managerial decisions during a game. For instance, if an opposing hitter has a high batting average against the pitcher on the mound, Torre will get these data in time to make a decision to replace the pitcher with one showing a better record against that hitter. The punch line of the article was this quote from Torre, "Managing a baseball team by hunch is fun, but a little data couldn't hurt."

The Behavior Bank

Precision Teachers actually recognized the need for a database early. Ogden Lindsley and Carl Koeng designed and managed a database, called the Behavior Bank, almost 15 years ago (Koenig, 1971; Pennypacker, 1973). It was an ingenious and ambitious project, years ahead of its time. Psychologists and educators who made contact with the Behavior Bank witnessed an important pioneering effort. It is unlikely that there is any behavior database today that comes close to the creativity and scope of its design.

We don't know the reasons for closing the Behavior Bank. However, a little first hand experience with it brought out some problems, chiefly those associated with centralized mainframe computer operations. By today's standards the Behavior Bank was distant, expensive, slow and clumsy--it wasn't "user friendly."

Microprocessors to the Rescue

Microprocessor technology and the advent of decentralized personal computing make it possible for Precision Teachers to create their own local database. These local systems are "user friendly," avoiding the problems of mainframe systems, and yet may be designed to do a variety of different and sophisticated jobs.

The primary requirements for such a local database are a microcomputer with disk drives, a Visi-Calc type spreadsheet program, and, of course, data. Our particular database uses the
It follows that some of the features of the develop an easy way for teachers to record their data. We developed a sheet called the Decision used; supporting pinpoints taught simultaneously; frequency where the learning line crosses the channel; component aim (stage—accuracy or fluency building); set size (e.g., number of spelling words in the teaching set); materials used; supporting pinpoints taught simultaneously; performance standard; learning picture; first and last frequency for corrects and errors (these are not actual data points, but are obtained by drawing the learning line and then recording the frequency where the learning line crosses the first and last calendar days in the phase). The data recorded are: learning data. The top section of the report includes the omitted data. The top section of the report gives identifying data, report titles and the data. The next section displays information on the practicum teacher, teaching setting, and course taken. Below that is a section that describes the learners. The next section, TEACHING AND LEARNING OUTCOMES, is the main body of the report—presenting the phase-by-phase data for all the learners and pinpoints taught during the semester. Immediately following is the SUMMARY OF OUTCOME MEASURES. This section summarizes data across all phases and provides totals, medians, and other values. Following this is a section that lists other kinds of experiences the teacher may have had during the semester. Examples of other experiences include: participation in staffing conferences, consulting with other school or nonschool specialists, etc. The last section of the report is titled BULLETIN BOARD. We use this section to commend our students, to make suggestions for change, and to post notices. The student is encouraged to respond in writing where it says "Comments."

The main section of the report, TEACHING AND LEARNING OUTCOMES, has many headings. Some are easy to interpret, while others will need clarification. Table 1 provides a brief explanation for each heading.

The PT Database in Action

Our first full use of the database was with eight students enrolled in practicum courses in the Department of Special Education, Spring semester 1983. The student teachers came to this course with widely different kinds and amounts of experience and expertise. Some were new to education, having just transferred from another college. Others were completing their last practicum before graduation. Practicum placement also varied. Five students were placed in elementary resource rooms for children with varying exceptionalities (learning disabilities, behavior disturbances, intellectual impairments). One teacher was placed in an alternative school for middle-school emotionally handicapped youth, and two were placed in self-contained rooms for the physically impaired and multiply handicapped.

Both authors and another doctoral student were supervisors. We held a weekly meeting, about an hour long, to teach and maintain the database system and to share charts. Our early sessions were devoted to teaching the Decision and Outcome Form, a generally easy job. A few problems developed with students who had not had prior PT training. The most persistent was recording actual first and last frequencies instead of those determined by the celeration line.

A Trainer's Database

At the University of Florida, our primary responsibility is to prepare quality special education teachers—a teacher training function. It follows that some of the features of the database described meet the unique needs of teacher trainers and supervising teachers more than others.

The first step in creating the database was to develop an easy way for teachers to record their data. We developed a sheet called the Decision and Outcome Form. One copy is used for each pinpoint taught and is attached to the Standard Celeration Chart. Information on the form is organized by phase. A phase being that period of teaching during which planned conditions of instruction remain constant. Teaching conditions, outcomes, and change decisions are recorded for each phase. The data recorded are: learning channel; component aim (stage—accuracy or fluency building); set size (e.g., number of spelling words in the teaching set); materials used; supporting pinpoints taught simultaneously; performance standard; learning picture; first and last frequency for corrects and errors (these are not actual data points, but are obtained by drawing the learning line and then recording the frequency where the learning line crosses the first and last calendar days in the phase). The data recorded are: learning data. The top section of the report includes the omitted data. The top section of the report gives identifying data, report titles and the data. The next section displays information on the practicum teacher, teaching setting, and course taken. Below that is a section that describes the learners. The next section, TEACHING AND LEARNING OUTCOMES, is the main body of the report—presenting the phase-by-phase data for all the learners and pinpoints taught during the semester. Immediately following is the SUMMARY OF OUTCOME MEASURES. This section summarizes data across all phases and provides totals, medians, and other values. Following this is a section that lists other kinds of experiences the teacher may have had during the semester. Examples of other experiences include: participation in staffing conferences, consulting with other school or nonschool specialists, etc. The last section of the report is titled BULLETIN BOARD. We use this section to commend our students, to make suggestions for change, and to post notices. The student is encouraged to respond in writing where it says "Comments."

The main section of the report, TEACHING AND LEARNING OUTCOMES, has many headings. Some are easy to interpret, while others will need clarification. Table 1 provides a brief explanation for each heading.

The PT Database in Action

Our first full use of the database was with eight students enrolled in practicum courses in the Department of Special Education, Spring semester 1983. The student teachers came to this course with widely different kinds and amounts of experience and expertise. Some were new to education, having just transferred from another college. Others were completing their last practicum before graduation. Practicum placement also varied. Five students were placed in elementary resource rooms for children with varying exceptionalities (learning disabilities, behavior disturbances, intellectual impairments). One teacher was placed in an alternative school for middle-school emotionally handicapped youth, and two were placed in self-contained rooms for the physically impaired and multiply handicapped.

Both authors and another doctoral student were supervisors. We held a weekly meeting, about an hour long, to teach and maintain the database system and to share charts. Our early sessions were devoted to teaching the Decision and Outcome Form, a generally easy job. A few problems developed with students who had not had prior PT training. The most persistent was recording actual first and last frequencies instead of those determined by the celeration line.
Figure 1

Teaching and Learning Database: Teacher Report

DEPARTMENT OF SPECIAL EDUCATION

REPORT DATE: April 19, 1983 -- Final Report

UNIVERSITY OF FLORIDA

TEACHER-- Carol M., TEACHING AT-- Elem with Betty N. COURSE-- grad practicum in LD-- teaching and inservice

Learner's Name Age Sex Program Grade Comments

Kenny 10 M LD Third IEP Focus: Ginn reading and preparing to move to new school
Wanda 6 F EMH First IEP Focus: Pre-academic letter and number skills
John 10 M EH Fourth IEP Focus: Ginn reading and Heath math
Keith 11 M EH Fourth IEP Focus: Positive classroom social behavior & Sullivan reading skills
Cleveland 11 M LD Fifth IEP Focus: Reading and behavior problems

TOTAL STUDENTS TAUGHT: 5

TEACHING AND LEARNING OUTCOMES

Learner Skill--Pinpoint Phase Set Focus Tmgs CalDays Tmgs/Day CFF CLF EFF ELF PFStdA CelCor CelErr Cordys Erdsy Ogs Lops Ogs/Day Lops/Day

Kenny S/S Math rndg 1 75 A 21 16 1.31 8 27 4 1 1 1.70 1.83 27 29 1425 225 89 14
at alm 2 75 F 6 2 3.00 28 29 3 1 1.72 1.00 3 2 300 0 150 0
S/W learn chnl 3 36 F 9 3 3.00 47 48 1 1 1.05 1.00 3 3 36 0 12 0

more data here...

Wanda S/S Color names 1 18 A 6 2 3.00 5 12 4 0 21 12 4.13 4.13 4 3 8 56 12 28 1
slice back 2 4 A 21 15 1.40 28 42 4 1 1.21 1.91 18 29 56 12 4 1
add colors 3 8 A 30 17 1.76 15 24 5 1 1.21 1.94 21 33 72 32 4 2

more data here...

SUMMARY OF OUTCOME MEASURES

\[ \frac{x}{s} / \frac{s}{s} \]

TOTAL PHASE COUNT= 114

SUM= 1654 16685 3938 46675 3591

MAXIMUM= 75 50 124 230 20 12 279.5 73 559 5950 225 512 53

AVERAGE= 18 2.65 34 54 3 1 1.59 1.21 15 35 413 32 50 5

MINIMUM= 0 1 0.94 4 6 0 1 1.00 1.00 1 0 -473 -39 -237 5

OTHER (not accuracy/fluency) OBJECTIVES: Maintenance( ) Endurance( ) Generalizn: Matri( ) Settings( ) Compliance( ) Spnt Use( )

OTHER FIELD EXPERIENCES: Parents Conf(2) Staffing Conf(1) Reg Program( ) Write IEPs(2) PT, OT, Spch, Phys Contacts( )

BULLETIN BOARD

** What can I say, Carol? This effort is tremendous. You have demonstrated high proficiency in many teaching skills. You have also produced more behavior change than we have yet documented by one student. Congratulations on a job exceptionally well done.

I need to find out from you how you recorded data when you did three timings on one and only one day. No growth ever shows, but I'm sure some took place.

Thanks for all you have helped us learn about teaching and learning. We all wish you the best and hope you have an exciting and rewarding career in education. Please keep in touch and share your skills and data with others.

COMMENTS--
By the last third of the semester, teachers were looking forward to discussing their reports. During the last meeting, the faculty distributed the latest version of their teaching reports and then left the room. When we returned, they were actively discussing technical aspects of their teaching. They seemed to be well under the control of the information database and were busy sharing and learning from each other. The database report was beginning to serve as a qualitative differences in productivity and classroom teaching. Ratings using the database detects major differences within and across teaches that are not detected during each third of the semester.

An important consequence of this system is that using the database detects major differences within and across teachers that are not detected by supervisors who rely on direct observation of classroom teaching. Ratings of form and process tend to miss or mask large quantitative and qualitative differences in productivity and efficiency within and across teachers. Also, the person who enters the data into the computer seems to have a more intimate knowledge of the specifics of teaching and learning dynamics.

**Summary Reports**

Figures 2 and 3 display the Teaching and Learning Database: Summary Report. This report uses most of the data in the database to print a report using 19 different measures to describe teaching activities and learning outcomes. It is designed to achieve two objectives: first, to permit easy comparisons of teaching and learning across teachers; and second, to provide a convenient summary of the total productivity and efficiency of all our practicum teachers. The summary report has many uses. Staff may use the data to analyze the effects of various training, supervisory, and placement procedures. Our special interest is to develop procedures for bringing the celerations and total productivity of teachers on the low end, up to the levels of teachers in the top quartile. The data may also be used as an empirical basis for reinforcing outstanding teaching, and for reporting teacher effectiveness to local school districts.

The first part of the Summary Report contains identifying and is displayed in Figure 2. Figure 3 displays the second part of the Summary Report and contains two sections: Teacher Input Options and Teaching and Learning Outcomes. The variability of outcomes is of particular interest. The range of variability is often $> X5$ and in some cases $> X25$. Even differences this large, on important dimensions of teaching, are nearly impossible to recognize by supervisors using direct classroom observations of teacher form and process—a serious shortcoming of traditional practice.

**New Measures**

We have used a few new measurement units: Cordys, erdys, ogs and lops. One objective of the database is to provide solid measures of teaching productivity, as well as measures of efficiency. As we see it, celeration is a good measure of efficiency—the rate of learning during a phase. Across many phases the median celeration and the proportion of celerations $> X2$ and $< X1.25$ describe teaching efficiency. However, we do not have a measure of productivity. For example, two teachers may both produce $X1.8$ celerations teaching new vocabulary words. They are identical in the rate (efficiency) of learning produced. However, one teacher may only sustain this rate of improvement for 5 days, while the other sustains it for 10 days. Their efficiency is the same, but the latter is twice as productive.

Cordy is a measure of productivity and is defined in Table 1. Cordy is short for "celeration correct days," Erdy is the analogous measure for error movements. It is short for "celeration error days." We believe these two measures give PT technology a useful measure of combined teacher-learner productivity. It takes some experience with cordys and erdys before they have intuitive meaning.

Another new unit is the Og. Carl Binder (1982) described the Og as a unit of knowledge or force, and attributed its origins to Eric Haughton. Ogs are found by multiplying the amount of curricular material by the performance frequency. For example, writing 20 spelling words at 22 words per minute, produces a force of 440 Ogs (20 X 22). Since the basic unit of our database is the phase, we have defined an Og as the product of the set size (amount of curricular material) multiplied by the frequency change in a phase. If, while learning 20 spelling words, a student progressed from a starting frequency of 8 words per minute to an ending frequency of 22 words per minute, 280 Ogs would be produced (20 X 14). Lops, short for "learning opportunities," are analogous units applied to the change in error frequencies during a phase. Ogs and lops are handy units for analysis of amount of curricular material on learning, as well as for describing total knowledge produced.
## Identifying Information

<table>
<thead>
<tr>
<th>Teacher Name</th>
<th>University Supervisor</th>
<th>School</th>
<th>Host Teacher</th>
<th>Course</th>
<th>Prev. Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alecia F. Gerent</td>
<td>Elem. Pat S.</td>
<td>EMR 6801-3cr</td>
<td>Transfer from Arts and Sciences College. No ed. courses or experience.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean H. Wolking</td>
<td>Class Susan P.</td>
<td>EED 6943-4cr</td>
<td>Four yrs. paid spec. Ed. exper. Last practicum.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadia H. Branscum</td>
<td>Elem. Eleanor H.</td>
<td>ELD 6944-3cr</td>
<td>One yr. pd. experience with severe emot. probs. Last practicum.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jill L. Gerent</td>
<td>Elem. Barbara H.</td>
<td>EPH 6942-6cr</td>
<td>Four yrs. + exper. at Sunland with adult retarded. 1st. practicum.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lynn N. Wolking</td>
<td>Sch. Susan C.</td>
<td>EED 6943-3cr</td>
<td>No pd. exper. Last practicum. Graduating in August.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Journal of Precision Teaching, Vol. IV, No. 4, Winter, 1984
## Teaching Input Options

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Number of Learners</th>
<th>Number of Pinpoints</th>
<th>Number of Phases</th>
<th>Number of Phase Changes</th>
<th>Median Length</th>
<th>Median Timings</th>
<th>Percent Accuracy</th>
<th>Percent Fluency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becky</td>
<td>6</td>
<td>24</td>
<td>53</td>
<td>29</td>
<td>Days= 18</td>
<td>485</td>
<td>0.45</td>
<td>32</td>
</tr>
<tr>
<td>Alecia</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>11</td>
<td>15</td>
<td>84</td>
<td>0.41</td>
<td>80</td>
</tr>
<tr>
<td>Jean</td>
<td>4</td>
<td>22</td>
<td>84</td>
<td>62</td>
<td>8</td>
<td>221</td>
<td>0.38</td>
<td>42</td>
</tr>
<tr>
<td>Nadia</td>
<td>2</td>
<td>9</td>
<td>34</td>
<td>25</td>
<td>14</td>
<td>193</td>
<td>0.64</td>
<td>74</td>
</tr>
<tr>
<td>Jill</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>14</td>
<td>70</td>
<td>0.86</td>
<td>89</td>
</tr>
<tr>
<td>Susan</td>
<td>2</td>
<td>10</td>
<td>55</td>
<td>45</td>
<td>5</td>
<td>918</td>
<td>3.00</td>
<td>51</td>
</tr>
<tr>
<td>Carol</td>
<td>5</td>
<td>33</td>
<td>113</td>
<td>80</td>
<td>7</td>
<td>1654</td>
<td>2.18</td>
<td>58</td>
</tr>
<tr>
<td>Lynn</td>
<td>6</td>
<td>16</td>
<td>70</td>
<td>54</td>
<td>4</td>
<td>345</td>
<td>1.00</td>
<td>3</td>
</tr>
</tbody>
</table>

**TOTALS**

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>125</th>
<th>434</th>
<th>309</th>
<th>xx</th>
<th>3960</th>
<th>xx</th>
<th>xx</th>
<th>xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest=</td>
<td>6</td>
<td>33</td>
<td>113</td>
<td>80</td>
<td>18</td>
<td>1654</td>
<td>3.00</td>
<td>89</td>
<td>97</td>
</tr>
<tr>
<td>Median=</td>
<td>4</td>
<td>13</td>
<td>54</td>
<td>37</td>
<td>11</td>
<td>283</td>
<td>0.75</td>
<td>54</td>
<td>45</td>
</tr>
<tr>
<td>Lowest=</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>70</td>
<td>0.38</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Hi/Lo Mult=x3.0</td>
<td>x6.6</td>
<td>x12.5</td>
<td>x26.6</td>
<td>x4.5</td>
<td>x23.6</td>
<td>x7.9</td>
<td>x29.6</td>
<td>x8.8</td>
<td></td>
</tr>
</tbody>
</table>

## Teaching and Learning Outcomes

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Percent Cel &gt; x2.0</th>
<th>Median Cel &lt; x2.5</th>
<th>Percent Cel /x2.0</th>
<th>Percent Cel Error</th>
<th>Median Cordys Total</th>
<th>Median Er dys Total</th>
<th>Performance Standards Attained</th>
<th>Total Ogs</th>
<th>Total Lops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becky</td>
<td>9</td>
<td>1.13</td>
<td>75</td>
<td>11</td>
<td>1.14</td>
<td>1172</td>
<td>1331</td>
<td>11</td>
<td>5532</td>
</tr>
<tr>
<td>Alecia</td>
<td>0</td>
<td>1.11</td>
<td>75</td>
<td>0</td>
<td>1.01</td>
<td>200</td>
<td>184</td>
<td>0</td>
<td>995</td>
</tr>
<tr>
<td>Jean</td>
<td>1</td>
<td>1.08</td>
<td>80</td>
<td>8</td>
<td>1.01</td>
<td>944</td>
<td>874</td>
<td>3</td>
<td>7361</td>
</tr>
<tr>
<td>Nadia</td>
<td>4</td>
<td>1.61</td>
<td>45</td>
<td>53</td>
<td>2.35</td>
<td>502</td>
<td>1371</td>
<td>5</td>
<td>19357</td>
</tr>
<tr>
<td>Jill</td>
<td>33</td>
<td>1.72</td>
<td>44</td>
<td>0</td>
<td>1.27</td>
<td>194</td>
<td>121</td>
<td>0</td>
<td>2304</td>
</tr>
<tr>
<td>Susan</td>
<td>56</td>
<td>2.44</td>
<td>2</td>
<td>4</td>
<td>1.55</td>
<td>879</td>
<td>1205</td>
<td>11</td>
<td>27289</td>
</tr>
<tr>
<td>Carol</td>
<td>28</td>
<td>1.56</td>
<td>34</td>
<td>41</td>
<td>1.62</td>
<td>1685</td>
<td>3938</td>
<td>12</td>
<td>46675</td>
</tr>
<tr>
<td>Lynn</td>
<td>56</td>
<td>2.44</td>
<td>4</td>
<td>9</td>
<td>1.01</td>
<td>942</td>
<td>582</td>
<td>68</td>
<td>25488</td>
</tr>
</tbody>
</table>

**TOTALS**

<table>
<thead>
<tr>
<th></th>
<th>xx</th>
<th>xx</th>
<th>xx</th>
<th>xx</th>
<th>xx</th>
<th>6518</th>
<th>9606</th>
<th>xx</th>
<th>135001</th>
<th>10743</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest=</td>
<td>56</td>
<td>2.44</td>
<td>80</td>
<td>53</td>
<td>2.35</td>
<td>1685</td>
<td>3938</td>
<td>68</td>
<td>46675</td>
<td>3591</td>
</tr>
<tr>
<td>Median=</td>
<td>19</td>
<td>1.59</td>
<td>39</td>
<td>10</td>
<td>1.21</td>
<td>910</td>
<td>1074</td>
<td>8</td>
<td>13359</td>
<td>1169</td>
</tr>
<tr>
<td>Lowest=</td>
<td>0</td>
<td>1.08</td>
<td>2</td>
<td>0</td>
<td>1.01</td>
<td>194</td>
<td>121</td>
<td>0</td>
<td>995</td>
<td>22</td>
</tr>
<tr>
<td>Hi/Lo Mult=x56</td>
<td>x2.2</td>
<td>x40</td>
<td>x53</td>
<td>x8.7</td>
<td>x8.7</td>
<td>x32.5</td>
<td>x68</td>
<td>x46.9</td>
<td>x163</td>
<td></td>
</tr>
</tbody>
</table>

* Jean was teaching in an afternoon tutorial program. The children were seen only twice a week. The other teachers usually saw their students four times a week. We try to schedule a Monday, Tuesday, Thursday, Friday teaching week. In our experience, 2 and 3 day teaching weeks produce poor learning.
Table 1

Explanations of Headings for the Teaching and Learning Database:
Teacher Report-- Teaching and Learning Outcomes

<table>
<thead>
<tr>
<th>Heading</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learner</td>
<td>Name of student</td>
</tr>
<tr>
<td>Skill--Pinpoint</td>
<td>Learning channel and pinpoint description</td>
</tr>
<tr>
<td>Phase</td>
<td>Assigns sequential number to phases within pinpoint</td>
</tr>
<tr>
<td>Set</td>
<td>Number of units in teaching set, e.g., number of spelling words in teaching set. Some pinpoints don't have a set number, e.g., reading</td>
</tr>
<tr>
<td>Focus</td>
<td>A= accuracy building  B= fluency building</td>
</tr>
<tr>
<td>Tmgs</td>
<td>Number of timings during the phase</td>
</tr>
<tr>
<td>CalDays</td>
<td>Phase length in calendar days</td>
</tr>
<tr>
<td>Tmgs/Day</td>
<td>Average number of timings/day for phase</td>
</tr>
<tr>
<td>CFF</td>
<td>First frequency of phase for correct movement-- on the celeration line</td>
</tr>
<tr>
<td>CLF</td>
<td>Last frequency of phase for correct movement-- on the celeration line</td>
</tr>
<tr>
<td>EFF</td>
<td>First frequency of phase for error movement-- on the celeration line</td>
</tr>
<tr>
<td>ELF</td>
<td>Last frequency of phase for error movement-- on the celeration line</td>
</tr>
<tr>
<td>PfStdA</td>
<td>Performance standard attained during the phase-- Great Falls performance standards used</td>
</tr>
<tr>
<td>CelCor</td>
<td>Celeration(mov/min/week) for corrects-- a multiplier unless less than 1</td>
</tr>
<tr>
<td>CelErr</td>
<td>Celeration(mov/min/week) for incorrects-- a divider unless less than 1</td>
</tr>
<tr>
<td>Cordy</td>
<td>Celeration for corrects multiplied by the number of calendar days in the phase; a measure of productivity</td>
</tr>
<tr>
<td>Erdy</td>
<td>Analogous to Cordy, but using celeration for errors</td>
</tr>
<tr>
<td>Ogs</td>
<td>Last frequency of phase on the celeration line minus first frequency of the phase on the celeration line times the number of units in teaching set</td>
</tr>
<tr>
<td>Lops</td>
<td>Analogous to Ogs, except calculated with error frequency change</td>
</tr>
<tr>
<td>Ogs/Day</td>
<td>Number of Ogs divided by number of calendar days in the phase</td>
</tr>
<tr>
<td>Lops/Day</td>
<td>Number of Lops divided by number of calendar days in the phase</td>
</tr>
</tbody>
</table>

Journal of Precision Teaching, Vol. IV, No. 4, Winter, 1984
Some Results

Figure 3 summarizes our work for Spring semester 1983. Eight teachers taught 31 learners 125 pinpoints and made 309 changes. Changes represent either a move to the next pinpoint or an attempt to improve learning or performance. There were a total of 3960 timings. We have found a high positive correlation between median timings per calendar day and median celerations for corrects.

Variability among teachers is large. The range of this variability may be seen by looking at the rows displaying Hi/Lo Multipliers, the last data row of each panel. The number of learners taught has a X3 range. At the other extreme, we find great variability in the number of timings and number of changes. Also, notice the differences in focus of learning. Ninety-seven percent of Lynn's phases were committed to fluency building. Jean, Susan and Carol each had a pretty even split between accuracy and fluency building. Alecia and Jill concentrated on accuracy building—reducing errors.

Looking at the outcome measures, we see that the median celeration for corrects across all eight teachers was X1.59. The median percent of the celerations for corrects X2.0 was 19. Looking at the less favorable outcomes, we see a median of 39% of the celerations for corrects < X1.25. A large proportion of these celerations were on motor skill pinpoints taught to physically handicapped children early in the practicum. The median celeration for errors was /1.21. with a median of 10% > /2.0. Although it is difficult to make the data on cordys, erdys, ogs, and lops meaningful in this brief article, let's look at how these units may be used. Becky, working with elementary age physically impaired/multiply handicapped children had a relatively low median celeration for corrects X1.13. Yet she was the second most productive teacher in terms of cordys, with a total of 1172. This means that, although the learning rates of her students were relatively low, these rates were sustained over a large number of days. In contrast, Susan produced one of the highest median celerations for corrects, but was ranked fifty in terms of total cordys. She produced rapid learning for relatively short phases—high efficiency, median productivity. The difference between cordys and erdys for a teacher describes the relative productivity between fluency and accuracy building.

Summary

We have described how to make a database that will be "friendly" and suit local needs of Precision Teachers. The equipment, software and knowledge needed puts this type of database within reach of many Precision Teachers. We have also suggested some of the functions this kind of PT database will serve well. Precision Teaching provides a technology capable of producing consistently effective individual instruction. The basis for this seems to be the high quality, sensitivity, and visibility of the data produced. However, a large number of local databases are needed to provide the broadest possible foundation for an increasingly effective technology for teaching and learning.

It seems certain that we will all come into increasingly frequent contact with databases of all kinds as we progress further into the information age. An interesting feature of any database is that it accumulates new uses, once a base of quality data exists and access to the data is made easy. The development of professional sports is an excellent example of this phenomenon. Over the years new player and team statistics have been invented and incorporated into the database of the team and ultimately the league. The database is used with great skill by the press, broadcast media and team owners to build and sustain interest in the individual player, team, league and sport. The database provides a language of, and facts about, the sport. Imagine a conversation about baseball without comparisons of batting averages, earned run averages, or standings in the league.

The uses our practicum students made of the database they generated makes us believe that teaching and learning can be easy to talk about accurately and nonpejoratively—and can be almost as much fun as discussing baseball, football, basketball or hockey. There will certainly be fewer knee injuries! To paraphrase Braves' manager Joe Torre, "Teaching, and training teachers by lunch is a lot of fun, but a little data couldn't hurt." Help save (to disk) Precision Teaching. Create a database!

Dr. William Wolking is a faculty member and Michele Gerent is a doctoral student in the Department of Special Education, University of Florida, Gainesville, Florida.

REFERENCES


Koenig, C. (1971). The behavior bank: A
system for sharing precise information.
Teaching Exceptional Children, 3, 57.

Martin, J. An end-user's guide to data base.

Pennypacker, H. S. (1973). Precision teaching:
Effective strategies and tactics for
intervention on behalf of the disabled
learner. In P Satz & J. J. Ross, The
disabled learner: Early detection and
Rotterdam, Netherlands: Rotterdam University
Press.

Chart-sharing

GROUP LANGUAGE ACTIVITY TO INCREASE
RECALL OF FACTS

Carole Peterson and Rosamary Holman
SIMS Project

Background

The activity described in this article was
conducted in an Oral Language class with eight
severely learning and language disabled junior
high students. This class is part of the SIMS
Project, which provides a highly structured
data-based program of individualized instruction
for severely learning disabled junior high
students. SIMS stands for Systematic
Instructional Management Strategies, terms which
describe the learning environment designed to
systematically establish individualized academic
and social goals for each student and to
continuously monitor and evaluate student
progress toward these goals. The Oral Language
class, which meets daily for one hour, is
co-taught by a learning disabilities teacher and a
speech clinician.

The students participate in a 15 minute group
activity focusing on language objectives from
orally presented material. These include: 1)
participating five times in a discussion, 2)
answering questions appropriately, 3) answering
questions in complete sentences, 4) asking
questions appropriately, 5) identifying the main
idea. The following activity evolved from
attempts to design more oral language probes
that could be used to monitor the group as a
whole. The purpose of this probe was to
increase recall of facts form orally presented
material.

Method

During the group time, the learning disabilities
teacher read and asked questions from a
selection in the Mott Basic Language Skills
Program. The sections focused on the lives of
Charles Lindberg, Walt Disney and Althea Gibson.
A short discussion followed reviewing the
important information with the students. A
one-minute group timing of think/say facts was
conducted. The students were assigned seats for
this activity so that the first student responding
rotated weekly. Each student was given five
seconds to initiate a response before moving on
to the next student. The learning disabilities
teacher monitored this through visual and oral
cues. The speech clinician counted the responses
as either correct, incorrect, or a repeat on a
master tally sheet and this sheet was reviewed
with the students before a second timing was
done that week. This procedure was performed
and the results were charted once a week for
seven weeks. To determine an aim, the
following measures were taken into consideration:

1. Guidelines set forth by Unique Curriculums
   Unlimited (10-30 ideas said from material
   read);

2. A free frequency was taken by instructing
   the group to think/say material that they had
   mastered (naming different kinds of food);
   The group named 29 foods in one minute;

3. A frequency aim was calculated by
   multiplying the frequencies for the first and
   second timings each by 50%, and adding these
   amounts to each frequency. This measure
   was suggested by the California Guideline for
   Rate Survey developed by the California
   Child Service Demonstration Center.

The group aim was set at 13 facts/minute for
both weekly timings. When the group reached
this aim by the fourth week, a new aim was
calculated and set at 20 facts/min. It was at
this point that the teachers decided to use the
following interventions in an attempt to see how
close the students could get to their free
frequency:

1. The students predicted the number correct
   for each timing based on the previous week's
   data and/or the first timing for that week;

2. Tangible reinforcers were given when
   predicted aims were met;

3. Thirty second practice timings were
   conducted and a strong emphasis was placed
   on giving one or two word facts; and