3. Assess students using the SIMS Concept Assessment.
4. Use direct teaching strategies to maximize learning.
5. Use continuous monitoring systems to provide feedback to teachers, students and parents.
6. Use data decision rules to determine when to make instructional interventions.
7. Interpret evaluation data to determine program effectiveness.

Information concerning training or curriculum materials may be obtained by contacting: Karen Nelson, SIMS Coordinator, or Mary Keithahn, SIMS Trainer.

SIMS Developer/Demonstrator
1501 Aldrich North
Minneapolis, Minnesota 55411
(612-529-4189)

COMPUTERS
Bill Wolk, Steve Graf and John Eshleman

Fall, the feel of crisp air and time to try new things and start new projects. We'll tell you about two programs this time. Maybe you will feel like trying one or both to help you accomplish some of your PT goals for the Fall. Both programs are new. One is a big commercial package designed to enable an Apple micro to take much of the paperwork out of Precision Teaching. The other is a short program, free and designed to turn a model I, III, or IV TRS-80 into an electronic behavior counter and cumulative recorder. You programmers will be able to revise it to make it work on the Apple II's.

Many of us have seen or used programs that accept frequency data and display and/or print some approximation of the Standard Celeration Chart. Three such programs have been used in the north Florida area for the past several years. There is one for the TRS-80 machines, one for the Apple II machines, and one for the Atari 800. They all seemed great at first and yet none of them have ever "caught on." There must be something wrong. Whatever the case, Ted Hasselring and Carol Hemlett and a small publisher in Portland, Oregon have taken a flyer at a commercial program to take the paperwork out of Precision Teaching. What follows is taken from an advertisement and is not based on first hand use of the program. Our purpose here is to alert JPT readers to the existence of the program and its functions.

AIMSTAR is the name of this program. It is described as user friendly, requiring "no special skills or training to use." One may not take this too literally, since a tutorial disk is included with the package. The purpose of the program seems to be to provide a rather broad base of support functions for data-based teachers and clinicians, including counselors, speech therapists, and itinerant service providers. The ad suggests that AIMSTAR will take the drudgery out of daily data recording and charting. It will also fit celeration lines and do most of the arithmetic computations PT'ers want done. Finally, it is supposed to "greatly aid in decision making." All sounds good. No mention is made of whether the program is used by the learner. It would be a shame to lose that interface.

Unique features of AIMSTAR include:
1. draws charts that simulate the standard six-cycle behavior chart or adjusted charts with fewer cycles (1, 2, or 3);
2. draws behavior charts with time spans of 30, 60, 120 or 270 days;
3. has a Help function which displays an AIM rate, a pointer, and an "exact value data point."
4. provides a "line of progress" which provides the learning trend line for the most recent six days of data;
5. has a "print chart" routine;
6. tracks each program component—such as skill name, program, aim date, aim rate, program objective, antecedent, correct and incorrect pinpoint, and consequences for correct and error movements;
7. increases teacher instructional time and decreases the data collection and data management time.

That's an impressive list of functions. It will be interesting to see how they work. The package includes 1 master diskette for Apple II, II+, or III; 1 backup master; 1 tutorial diskette, and 1 Users Manual. The price is $195.00. It is available from ASIEP Education Co.; Dept. A4: 3216 NE 27th Ave; Portland, Oregon 97212.

If you have a model I, III, or 4 TRS-80 computer and a joystick, you may use this program to count up to four separate behaviors simultaneously and to get a print out of the counts by any unit of time you select. This short program makes counting and recording several behaviors at once easy. A joystick is used to input behavior counts. Instructions for users are included as an early segment of the program.

When you start this program you enter a name for the four behaviors to be counted and select a reporting interval. Behavior counts are displayed on the screen as soon as you move the joystick in an up, down, or sidewise direction. At the end of each interval a summary of counts

Journal of Precision Teaching, Vol. IV, No. 3, Fall, 1983 73
for the interval is sent to the printer. If you select a one minute interval, you will have a record of frequencies on a minute by minute basis. If you select a 5 minute interval, the printed summaries will record the total count for each behavior for five minutes.

This program is especially useful for live demonstrations of behavior baselines and interventions. Summaries of behavior counts may be printed out every minute (or any other interval selected) until the baseline appears stable. When the baseline looks stable, put a contingency into effect. The output from this program will show you "on line" whether the contingency is functional.

This program was written by Dr. Henry Tenenbaum, Multidisciplinary Classroom, College of Education, University of Florida, Gainesville, FL 32611. Please contact him for copies.

If this program could be made to work on a Radio Shack Model 100 computer it would make a very portable and convenient package for traveling and consulting PTers. The Model 100 is a new generation of "lap" computer, weighing only 3.9 pounds and about the same volume as a large textbook. It has a very versatile set of programs included and operates on batteries for about 20 hours.

That's all folks! Next time we hope to be able to give you some firsthand user evaluations of AIMSTAR and other goodies.

TERMINOLOGY

Free/Abrreviate, Free/Write, and Free/Say

Ogden R. Lindsay

At the Second Orlando Winter Precision Teaching Conference, Julie Vargas commented from the floor at one of the sessions that we should stop using the word "think" for learning channels without specific input. I agreed with her as did Steven Graf and also John Eshleman. Others at the conference snickered and mentioned that we were trying to be old-fashioned behaviorists refusing to accept the obvious.

At the Third Orlando Winter Precision Teaching Conference held a year later, the same rooms in the same motel called back our concerns from the prior year. I started searching for more accurate substitutes for the "think" in the channels "think/abbreviate", "think/write", and "think/say".

Although logical to say nothing or write a dash for the input in these channels without specific immediate input, it is awkward and almost impossible to talk that way. "Nothing/abbreviate", "dash/abbreviate", "simply abbreviate" are not only awkward, but downright misleading.

This second time I worked on this problem of handling unspecified channel input, I discovered an excellent solution. I had just finished describing the origins of small animal free-operant conditioning to several conferencegoers, stressing the importance of the lack of controlling antecedent stimuli in the "free" aspect of the free-operant.

Guess what? As I walked off into the room where a year earlier Julie had criticized "think/abbreviate" and "think/write", I said "free/abbreviate" and "free/write" and "free/say"! Those words accurately describe the channel where the behaver is free to perform with no stimulus restrictions before an audience or with a pencil or blank paper.

The word "free" comes from "free-operant conditioning" which was used to describe the important differences between free- and controlled-operant conditioning in the laboratory research of the fifties (Ferster, 1953). The difference between "free/say" and "see/say" is that the "see/say" channel specifies that visual stimuli are controlling the behavior. Of course, "see the lower case letter/say its sound" is the precise way to describe a channel using a detailed object for each channel input and output verb. We should only resort to verbs without objects when we are summarizing across a lot of specific channels using the same sense inputs and motor outputs.

Julie Vargas wanted to do away with "think" as channel input and also as output. She wanted to do away with all "thinking" in our descriptions. I disagree. Thinking frequencies are very useful to compare with a person's writing and saying frequencies when analyzing behavior. We need to keep "think" as a behavior, as an output.

"Think" outputs are impossible for someone else to monitor entirely, but external products can be counted. We would then have channels like:

Free/think the alphabet names in sequence and repeat.

Free/think the alphabet sounds in sequence and repeat.

Free/think count by ones.

Free/think count by twos.

Free/think multiply sequentially by 2.