assignments through the day;
2. Each child has a partner and is responsible for being sure that all samples are completed before the day's end;
3. Child raises flag on desk to indicate readiness for timing, then goes on with other work. Teacher times when able.
4. Use volunteers or peer tutors to time.

C. In general
1. Take short timings. For most academic work one minute is adequate.

III. ORGANIZE CORRECTION
A. Self-correct
1. Answers on back of practice sheet
2. Correction key at a correction center
B. Others correct
1. Assign correction partners
2. Use volunteers, aides, older pupils

IV. ORGANIZE CHARTING
A. Self Charting
Have pupils chart their own counts and have them checked by the teacher or a "chart monitor";
B. Other Charting
1. Assign charting "partners";
2. Use tutors from an older class to time, count and chart. (If this procedure is followed, tutors should be trained before they begin, preferably with a criterion test as the deciding element that allows a tutor to begin work.)
3. Use retired people or adult volunteers as chart monitors.

V. ORGANIZE DECISION MAKING
A. Self Decisions
Train pupils to alert you when "learning pictures" indicate trouble;
B. Others Decide
1. Scan each chart daily and "red flag" those that require a six day trend or decision;
2. Have chart monitors alert the teacher to impending changes by placing questionable charts in a special basket or tagging with a red flag;
3. Establish a routine of checking charts on specific days.

COMPUTERS
John Eshleman, Steve Graf, and Bill Wolking

This year's Winter Precision Teaching Conference saw continued evidence that the combination of microcomputers and Precision Teaching is a nicely meshed relationship. To wit:

Bill Wolking presented how he uses Visi-Calc to organize data pertaining to how much learning student teachers produce. This software can be classified in the area of computer-managed instruction (CMI). His software allows for effective monitoring of student-teacher productivity. Various measures of teaching efficiency and effectiveness—a series of measures with names like "Ogs" and "Lops"—are computed by Visi-Calc. All in all, it was an effective demonstration of the application of already existing software.

In the area of "computer assisted instruction," or "computerized instruction" as John Eshleman prefers (because the machine is actually doing the teaching, not merely "assisting" in it) Bill Wolking and Michele Buss made a presentation. They showed a microcomputer program on the TRS-80 Model III that teaches Precision Teaching technical terms. Their software, moreover, stores learning histories. This latter aspect is a step towards cybernetic computerized instruction—or "self-corrective software."

Also in the area of computerized instruction the Zero Brothers (Zack and Zeke) were back for a second year in a row. Steve Graf (Zeke) and Jack Auman (Zack) presented an updated and advanced version of their Precision Decisions program. This program—for the Apple II+ computer—teaches data-based decision making from data generated by the Apple (although, once a decision has been made the generated data reflect that there has been a decision made by the user). Importantly, the program brings one to select looking at both correct and error frequencies and to look at a week's worth of data before making a decision. Also importantly, instead of waiting an actual week before making a decision—by which time charting behavior may have extinguished—the decision making responses are compressed into a short period of time.

John Eshleman presented the strategies and
tactics of how he is proceeding with setting up CI software that not only measures the frequency of student responding at the keyboard, but also the celeration (in this case: count/min./5 min.). The idea is to have the machine make a celeration-based decision, and implement a program change if possible. The program is being written on an Apple II+.

Lastly, John Eshleman made a presentation entitled "All the known Precision Teaching references: Building a microcomputer data-base." On a floppy disk for the Apple II+ computer are more than 650 Precision Teaching/Standard Celeration Chart references ranging from 1964 through 1983's conference. This software is an initial effort towards building a computerized data-base. Hopefully, once this data-base gets distributed, our communications with and acknowledgements of others will accelerate.

If you have any Precision Teaching relevant software or know of any, let us know. Also, this may be of interest to readers of the Journal of Precision Teaching: there is a software directory published in every issue of The Behavioral Educator newsletter. To subscribe or find out more information about this related publication you can contact The Behavioral Educator, 504 Allen Hall, West Virginia University, Morgantown, WV 26506.

LETTER TO THE EDITOR

Marie Eaton

Just a note for those who read the article in the Winter 1983 issue on "Using Precision Teaching to Teach Precision Teaching." Sheila Fox and I have increased the frequency for both accuracy and fluency for most of the units. We adjusted the frequencies based on the student's scores from 6 academic quarters. The new frequency are:

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Fluency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1,2,4, 5A,6,7A,8</td>
<td>20/0</td>
<td>30/0</td>
</tr>
<tr>
<td>Unit 3</td>
<td>25/0</td>
<td>35/0</td>
</tr>
<tr>
<td>Unit 5B</td>
<td>10/0</td>
<td>20/0</td>
</tr>
<tr>
<td>Unit 7B</td>
<td>10/0</td>
<td>15/0</td>
</tr>
</tbody>
</table>