PARALLEL BETWEEN FREQUENCY TESTING AND PERFORMANCE ON ESSAY QUESTIONS IN A THEORIES OF PERSONALITY COURSE

C. E. McDade
S. B. Rubenstein
C. P. Olander
Center for Individualized Instruction

Abstract

Reinforcing high frequency of correct responses in a personality theories course resulted in student fluency with those theorists studied. This study examined the relationship between frequency testing of basic concepts and application of those concepts on essay questions. A consistent concomitant increase in frequency of correct basic concepts described or identified on flash cards and frequency of correct concepts written on essay questions was observed. When concepts were identified through an identical method on a microcomputer, similar results were observed.

In recent years there has been an emergence of alternative measurement and instructional strategies such as Precision Teaching (PT), Personalized Systems of Instruction (PSI) and Computer-assisted Instruction (CAI). Each system has produced valid principles which can be used to improve instruction. The Center for Individualized Instruction (CII), Jacksonville State University, has experimented with frequency testing, a component of PT, in conjunction with CAI and PSI. Frequency testing refers to assessing student accuracy and fluency with academic material during short counting periods.

Frequency testing key basic concepts in a discipline can result in a proficient understanding of these concepts by the student, as well as, positive reinforcement for the instructor (Merbitz & Olander, 1980). Both student and professor develop a common ground—a working fluency with the terminology—which allows them to discuss freely and confidently the more complex ideas in the discipline.

A combination of three innovative teaching methods—PT, PSI, and CAI—allows a student to learn through self-paced instruction, with no penalty for repetition of material or for being "slower" than other students. Large lessons are divided into modules which the student learns one at a time, achieving a fluency criterion determined by the instructor.

Microcomputers can be used for frequency testing students, since they can minimize bias and completely eliminate scoring errors. Scanlon (1981) suggested that the computer is not meant to replace the teacher and should rarely be used without advisor or instructor supervision. In the CII, microcomputers are used to provide testing, exercises, or simulations, most requiring advisor-student interaction to interpret computer-generated feedback.

The unique nature of frequency testing makes convincing students of the validity of the method difficult at first, but this is soon overcome. When a student experiences feelings of accomplishment from reaching a goal, s/he is apt to seek further opportunities to realize additional achievement-oriented behaviors (Porter, Lawler, & Hackman, 1965).

The present study compares frequency testing under two conditions: flash cards versus computer-generated terms. It also examines the validity of frequency testing by observing parallels between frequency test performance and essay question performance in university undergraduates enrolled in a theories of personality course.

Method

Subjects and Setting

Six undergraduate students enrolled in PSY 335: Theories of Personality at Jacksonville State University (JSU) served as subjects in this study. All subjects enrolled in the class were unaware of any experimental design incorporated into their course policy, although they were informed that the policies of the course would be modified in response to student performance.

The course was structured under the Personalized Systems of Instruction (PSI) method used at the Center for Individualized Instruction. Student performance sessions were monitored by the instructor or by graduate and undergraduate advisors with knowledge of the course material. Students were allowed to come to the Center as often as they liked to seek help on material.

Procedure

Students taking PSY 335 were required to become fluent with the ideas of one theorist before proceeding to subsequent theorists. After fluency with three or four theorists was demonstrated, the student took a review test, contributing one-fourth of the course grade.

Student evaluation exercises were of two types: (1) description or identification of basic concepts, terms or definitions, and (2) composition of an essay. Frequency testing of the descriptions or identifications required two fluency criteria: (1) an accuracy criterion of
reach fluency on the material by recall on flash cards and microcomputer) and frequency of correct concepts written on essay questions. Charts 1 and 2 display one student's performance on frequency testing of basic concepts and essay questions. Generally (for all students), as the frequency of correct concepts on the frequency testing component increased, the frequency of correct concepts on the essay questions also increased. The opposite also holds true for the frequency of incorrect concepts.

Typically, also, the frequency of words and concepts written per minute on the essay questions increased over the course. A comparison between the last essay question on the second unit and the thirteenth unit showed a mean increase in frequency of words of 5.8 (t = 2, p < .05), as well as a mean increase in frequency of correct concepts of 0.69 (t = 0, p < .05). The authors also observed that students were answering the essay questions concisely, without excessive verbiage.

Discussion

The present study has two implications for improving college instruction. First, frequency testing key basic concepts, resulting in the student becoming fluent as well as accurate, facilitates student use of those concepts on essays. Not only do the students apply the concepts better as they identify them fluently, but they also do so more concisely.

Secondly, frequency testing requiring recall and frequency testing requiring recognition appear to have the same effect on essay performance. With no difference in the mean number of attempts to reach fluency, both formats of frequency testing are efficacious. Instructors with access to microcomputers can enjoy the benefits of computerizing frequency testing without fear of the machine "de-humanizing" the classroom. Those who do not have the technological advances in their settings can create flash card decks which will assess student performance just as well.

The validity of frequency for shaping and evaluating student performance is being supported by a growing body of empirical data. Given the change of teaching unique individuals with varying levels of intelligence, motivation, and past academic performance, the university instructor may find frequency indispensable for accomplishing the task.

REFERENCES


Lochhead, J., & Clement, J. (Eds.). Cognitive process instruction: Research on teaching
Chart 1. A Student's Performance on Flash Card or Computer Frequency Testing in a Theories of Personality Course
Parallel between frequency testing and performance on essay questions in a theories of personality course.

McDade, C.E., Rubenstein, S.B., and Olanc., C.P.

Journal of Precision Testing, Volume IV, Number 1, Spring, 1983.

Chart 2: A Student's Performance on Essay Questions in a Theories of Personality Course.

COUNT PER MINUTE

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

1000 500 100 50 10 5 1

Spring Break

Final Exams

Number 1, Spring, 1983. Journal of Precision Testing, Volume IV.

Frequency testing and performance on essay questions in a theories of personality course.

McDade, C.E.; Rubenstein, S.B.; and Olanc, C.P.
The quantification of behavior change (celeration) and variability (bounce) are two of the many features of the Standard Celeration Chart that have a significant impact on the daily decision-making behavior of practitioners. The relationship between celeration and bounce and to what extent the bounce is due to celeration or uncontrolled variability is an important practical training issue. Frequently, this relationship is not used to its greatest practical utility—an aid in the assessment of the effectiveness of training procedures.

Pennypacker, Koenig, and Lindsley (1972) and White (Note 1) suggest that the more variability that can be explained by the effects of the celeration, the more effective the procedure, and the greater the predictive power of the procedure. In essence, measurement of variability during the treatment phase of a training program can be used to assist in assessing the effects of procedures on learning. The purpose of this paper is to explain Pennypacker et al.'s (1972) procedure for measuring and quantifying variability, and to apply this method to the assessment of the effectiveness of backward chaining (BC) and total task (TT) training procedures with severely handicapped persons.

Method

Subjects and Setting

The subjects were eight severely and profoundly handicapped individuals living in a state residential training facility. The five women and three men ranged in age from 14 to 58 years. Their I.Q.'s as measured by the Stanford Binet ranged from 14 to 27. Six of the subjects were enrolled in a vocational training program where they sorted plastic spoons, while two adolescent subjects were enrolled in an on-grounds school program.

The setting was a 5 by 4 meter room divided by a wall to provide two training rooms. The settings were tailored to be similar.

Apparatus

Two different items, a drain and a gate valve, were assembled by each subject. Each item consisted of seven different pieces. No pieces of the two items were identical or interchangeable. The drain was composed of a 7 cm by 3.5 cm drain head, a .5 cm rubber washer, a 6.5 cm hexagonal lock washer, a 4.5 cm by 10 cm pipe, a 4 cm slip nut, a 4.5 cm

Journal of Precision Teaching, Vol. IV, No. 1, Spring, 1983