daily communicative behavior could be timed and counted. We know that people have circadian rhythms—how about weekly, monthly or seasonal undulations in concepts communicated per minute? Perhaps at the next Winter Precision Teaching Conference in Orlando we can discuss some of these possibilities.

See you there!

Please send any news items to:
Dr. Carl Binder
Behavior Prosthesis Lab
Walter E. Fernald School
Box 158
Belmont, MA 02178
Dr. Charles Merbitz
Rehabilitation Institute of Chicago
345 East Superior Street
Chicago, IL 60611

CONSIDERING STANDARDS

Eric C. Haughton

Performance standards! Who needs them?

Don’t we have enough challenges in our day to day activities without introducing this nettlesome issue?

Exactly my own train of thought, or non-thought, about this topic unit, . . . At this point a montage of behavers floods my inner eye, as I see people expected to perform, but inexplicably, could not. Searching backward and forward in their behaving systems, we (co-workers and myself) often found a key prerequisite performance either absent or else profoundly deficient.

Such findings, of profound lacks or deficits, led us to analyzing what we knew about performance-based decision making. Ten years ago this was a radical question as curricula decisions (for example) were largely based on quality considerations and/or were peer-norm referenced in our traditional, commercial standardized tests. Since performance decisions in our programs require specific, precise and topical data on both quantity and quality, we obviously had precious few performance references for our decision making.

That we have few reference standards in the Behavioral Sciences places us in marked contrast to other major human service providers. Concerned professionals in medicine, architecture and construction, transportation, nutrition and electronics are concerned about various standards influencing the quality of our lives. Not that there isn’t more work to be done, enforcement improved and many refinements desired in this crucial area. We now take for granted, however, 37°C Celsius or 98.6°F Fahrenheit, resting pulse in the 60 to 80 beats per minute range along with 10 to 15 respirations per minute as signs of adequate health. A lengthy listing of all the normal ranges of indicators signifying physical health is available. Those ranges are fairly well understood as are physical consequences resulting from being outside the range along with effective options for remediating debilitating deviations. On the other hand, suppose we require a such firm frame of reference in reading, writing or arithmetic? Until recently we have had no established performance standards against which we could compare our client’s data. (Note: We require performance data not references that are related to such irrelevant factors as age or grade level.)

An early example of this dilemma occurred in my work about 1970 when, puzzled about some decisions required for grade one and two reading projects, I remember asking Clay and Ann Starlin what levels we could consider adequate in oral reading. Their best estimate was about 80 words correctly pronounced per minute. We needed a performance standard to guarantee children’s successful progression in reading. Now, after many explorations based on performance and learning measurement, we know that preschoolers easily exceed 300 words per minute in the See text/Say words channel on practical and, practiced materials. These recent data underscore the retarding consequences of referring to age or grade averages when we need refined definitions of proficiency or fluency.

As many of you know, 80 words per minute exceeds 1982 grade one peer-norm referenced measurements by about x1.6. We, who are concerned about performance standards that insure proficiency, are required to learn what to expect from our performers and not from external data commercial sources. We learn about performance requirements from continuous assessment work with our cooperating behavers. Skilled people are like a carefully woven, beautifully symbolic tapestry—a wrap and woof of smoothly synthesized fluent performances.

The idea of relating to “standards” usually produces a mixture of interest, positive inferences, negative feelings, along with considerable trepidation. Quite a mixture! Such a mixture of inner reactions can combine to cause us to veer away from the issue. For good reasons too!

One of the most intriguing stories exemplifying the puzzle of our mixed feelings toward standardization relates to the habitual arrangement of our typewriter keyboard. My typing involves a QWERTY keyboard, established
by international agreement in 1905. This article
has been prepared for publication on a 1982
micro-computer word processor, also using the
QWERTY keyboard! Now, typewriters in 1905
were run by a sort of spaghetti-like maze of
connectors which frequently jammed, even at low
typing speeds. These machines especially jammed
up as typists shifted from two-fingered junt and
peck typing style (popular in the early 1920's) to
deciding to memorize the keyboard and to using
all eight fingers to cover the typewriter's
keyboard. Our QWERTY keyboard underwent
careful design to slow down overzealous typists.
Then, in the 1920's, Dr. August Dvorak decided
to improve the effectiveness of the typewriter.

A simple time and motion study combined with a
letter frequency analysis, along with
improvements in mechanical design promised to
revolutionize typing as a communication skill.
The Dvorak Simplified keyboard places vowels on the
"home row," thus increasing the number, as well as the frequency of words typed in this
position. A Dvorak keyboard increases x30,
(from 100 QWERTY to 3,000) words typeable on the
home row. Most prefixes and suffixes
become available on the home row, too.

Further effectiveness occurs because instead of
the left hand typing about 56% in the QWERTY
arrangement, the right hand takes 54% of the
work load in the Dvorak Simplified keyboard. As
you might expect, typing frequencies increase by
about 35%. Furthermore, finger travel for skilled
typists is reduced by a factor of 30 from about
30 kilometers (20 miles) per day to 1.5
kilometers (1 mile).
our classic, confused emotional reactions to the
topic of standardization. In 1932, we could have
shifted to a keyboard that is easier to learn,
facilitates typing in several ways and allows for
increased performance. Yet, today, even
micro-computers require a $200 keyboard
ehancement card to allow you to use this (or any
other personal) arrangement of keys. We are
still stuck with an arbitrary, outmoded,
inefficient and error-producing keyboard layout.
Resulting from a decision to standardize the
keyboard almost eighty years ago. How could
such a disaster occur? Mainly because we lack
necessary processes and procedures to manage
standardization.

So, if you approach this topic of standardization
with mixed feelings, imagine how August Dvorak
felt, when, at his death in 1975, no significant
moves had been made in such an apparently
simple and well-documented area as the
typewriter keyboard. This is an amazing example
of how agreed-upon standards have retarded
progressive, desirable developments. And yet,
there are many examples of how standardization
contributes to our comfort, health and security,
especially in health and physical areas.

Determination of performance standards requires
effort and so does their implementation into our
daily lives. Such challenges confront established
attitudes, current practices, technical habits, "old
wives' tales," economic factors as well as some
of our fundamental values. Therefore, the topic
of performance standards is complexly puzzling,
even potentially terrifying.

In this series of articles, we will explore this
stimulating and challenging topic, and the various
aspects and concerns related to human
performance standards. I welcome communication
and contributions from others concerned about
and/or working in this area. My plan is to
discuss such aspects as quantity and quality
criteria, decision making, simultaneous and
sequential implications, the role of prerequisites
in developing behaviour patterns, as well as to
explore various stages and techniques for
studying and establishing meaningful standards.
Furthermore, in the next article I will illustrate
how peer-normed performance referencing
contributes to retarding, even disabling each of
us and our developing students.

Little is yet known in this crucial area of human
performance development—especially in schooling
and academic areas—and so, my hope is that we
will cooperatively investigate this topic together
to expand and refine our knowledge. This is a
topic whose effects determine the consequences
of each project or intervention conducted by us
in the interest of our trusting clients.

The Rehabilitation Institute of Chicago, a
private, non-profit hospital affiliated with the
MeGaw Medical Center of Northwestern
University and specializing in the rehabilitation
of physically disabled individuals is accepting
applications for a Research Associate to serve in
the Learning Research Unit.

Required skills include exceptional fluency in
Precision Teaching with the Standard Celeration
Chart and in the Experimental Analysis of
Behavior as it applies to a multidisciplinary
rehabilitation setting. This perspective must be
accompanied by skill in facilitating the use of
behavioral technology by persons of widely
differing theoretical orientations. Desired are
experience and skills with microcomputers,
programming, electromechanical transducers of
movement, statistics, scholarly writing and
consulting. Responsibilities include design and
execution of research projects that elucidate the
relationships between events (especially in
therapy) and changes in the behavior of persons
undergoing rehabilitation. Ph.D. with hospital
experience desired, ABD considered. Salary
competitive. Please send vita to:

Charles Merbitz, Ph.D.
Learning Research Unit
Room 981
Rehabilitation Institute of Chicago
345 East Superior Street
Chicago, Illinois 60611
(312) 649-6397