of 40-45 per minute.

Each day I asked Packy if he wanted to be timed. As his learning picture shows the answer many times was "No!" "The child knows best," right? The cards were presented to him during one minute timings of corrects and errors. I did not count skips. After a week of X1.0 on the whole deck (see Chart 1), Packy asked me to present him just Larry Bird and two other players from the starting team that he named at rates higher than other team members. Accordingly, I sliced his curriculum by pulling all but the starting players from the desk and got a frequency jump-up of nearly X4.0 and an acceleration of X1.4 over 8 calendar days. After five days of routine practice and no timings, Packy said, "Daddy, I want all the guys." I put all the players back in the deck. Packy's correct frequencies divided by nearly 3.0 but started on a X1.4 acceleration over 24 calendar days. His highest frequency was 32 correct per minute with no errors.

Packy's acceleration began to turn down and flatten out over the last several timings. It was clear from observing Packy that the ceiling which was appearing was imposed by his lack of fluency in saying names with several syllables like "Red" Auerbach, "Tiny" Archibald, Gerald Henderson, and Cedric Maxwell. The calendar day after the last frequency on the Chart, I asked Packy if he wanted to do a timing. He said "No, I don't want to." That was the last time he wanted anything to do with the cards. Three weeks later I picked up the deck and tried a timing—3 correct and 9 errors. My interest is in whether Packy's retention would have been higher had he reached the adult pace I used as an aim.

Many basketball fans have looked askance at the notion of "Celtic Pride." Packy's celerations and frequencies hopefully serve as a functional definition of Celtic Pride—in two-year-olds anyway!

Jim Pollard is the program director at the Merrimack Assessment and Diagnostic Center, 101 Mill Road, Chelmsford, Massachusetts 01824 (617-256-6254).
Chart 1. Mother and Teacher Help Eric Learn to Make Change
Mary Ellen Strobl is a teacher with the Missouri State Schools for the Severely Handicapped. She resides at Route 2, Box 7, Peculiar, Missouri 64078. Mr. and Mrs. Theron Dehazer are Eric’s parents.

THE EFFECT OF NUMBER OF MATH DRILLS PER DAY ON MATH PERFORMANCE

Sharon Raggio and Stephen C. Bitgood
Jacksonville State University

Frequency testing or short drills on basic math facts has been shown to be an effective method of increasing proficiency in an expedient manner (e.g., Bitgood, submitted; Bitgood & Mitchell, submitted; Haughton, 1980; Van Houten & Thompson, 1976). The purpose of the present study was to find the optimum number of drills per day for frequency testing. Information on the optimum number of drills per day would be important since it would allow the precision teacher to develop more cost-effective instructional procedures.

Eight youths, 12 to 16 years of age, with grade levels from 5th to 9th grade, served as participants. At the time of the study they were all temporary residents of a group home for youths judged by the courts to be in need of supervision. Math achievement performance levels for these youths on the Wide Range Achievement Test varied from grade level 3.6 to 7.6. The students were given daily drills in all four math operations (i.e., addition, subtraction, multiplication, and division); answers were written on mimeographed worksheets each containing 100 basic math facts. The number of drills per day for each math operation was fixed at either one, two, four, or eight. Drills per day and math operation were counterbalanced. Thus, two students received one drill per day on addition, two on subtraction, four on multiplication, and eight on division; the next two students received one drill per day on subtraction, two on multiplication, four on division, and eight on addition; the next two students received one drill per day on multiplication, two on division, four on addition, and eight on subtraction; and the last two students received one drill per day on division, two on addition, four on subtraction, and eight on multiplication. Students were given a total of 16 drills on each math operation across training. Training was distributed over 16 days for the one-drill-per-day condition, eight days for the two-drill-per-day condition, four days for the four-drill-per-day condition, and two days for the eight-drill-per-day condition. Each drill was one minute in duration.

Chart 1 displays the data for each drills-per-day condition. Each data point represents an average of all the drills performed by the eight students that day. Across all four math operations, the two-drills-per-day condition produced a acceleration of X1.4 per week, while the one-drill-per-day condition produced a acceleration of X1.3 per week. The available data points from the four-and-eight-drills-per-day conditions indicate the possibility of much higher acceleration.

These data suggest that two drills per day on math operations is likely to produce slightly higher acceleration than one drill per day. Some evidence is presented suggesting that four or eight drills per day may produce considerably higher accelerations.

REFERENCES


Sharon Raggio is a graduate student and Stephen C. Bitgood is an associate professor of Psychology, Jacksonville State University, Jacksonville, Alabama 36265.

About PT

NOTES FROM THE EDITOR

Patrick McGreavy

Welcome to Volume III, No. 2. If you are a new subscriber, a very special welcome goes out to